Excited Delirium: What It Is, What It Isn't and How We Know

Dr. Christine Hall
SUDDEN IN-CUSTODY DEATH: investigative considerations

Declaration of Conflicts
- Definition of a conflict?
- Emergency Medicine
- Research funded by CPRC, NIJ
- MSc Epidemiology, UofC
- Expert witness/ inquests
- Contracted by Force Science

Objectives
- Discuss use of force
- Discuss sudden in custody death
- Discuss potential factors in Sudden In Custody Death (SICD)
- Discuss Excited Delirium and its features and issues
Use of force overall

- Context is extremely important
- Subject behavior dictates officer response
- There is NO standardized reporting of use of force
- Definition is important
- To date: no use of force modality predicts SICD

RESTRRAINT study: use of force events

- 5 years of study, 7 Canadian police agencies, 4 cities
- IRB approved in multiple Universities
- Prospective, consecutive sample
- 3.25 million police public interactions
- Use of force = above soft hands physical
- 4828 events (0.1% of all police public interactions)
- Police use of force did NOT occur in 99.9% of interactions
- 95% CI (99.9, 99.9)

Context for Use of Force

<table>
<thead>
<tr>
<th>From poring paper N= 4373 with known position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
</tr>
<tr>
<td>RACE [4]</td>
</tr>
<tr>
<td>Officer’s impression of abnormality on scene</td>
</tr>
<tr>
<td>EDP only</td>
</tr>
<tr>
<td>Alcohol Only</td>
</tr>
<tr>
<td>Drugs Only</td>
</tr>
<tr>
<td>All 3</td>
</tr>
</tbody>
</table>

© C. Hall 2015
Force modalities (alone/combined)

<table>
<thead>
<tr>
<th>Modality</th>
<th>Update % of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys/Stun/Strikes*</td>
<td>76.8%</td>
</tr>
<tr>
<td>Hobble*</td>
<td>17.4%</td>
</tr>
<tr>
<td>VNR</td>
<td>6.4%</td>
</tr>
<tr>
<td>Baton</td>
<td>4.7%</td>
</tr>
<tr>
<td>OC spray</td>
<td>3.8%</td>
</tr>
<tr>
<td>CEW*</td>
<td>14.7%</td>
</tr>
<tr>
<td>Firearm pointed*</td>
<td>8.5%</td>
</tr>
<tr>
<td>Firearm fired</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
How common is SICD?

- In our study, 1 person unexpectedly died out of 4868 use of force events
- 0.02% of use of force (0.0005%, 0.1%)
- 99.98% of use of force survives

SICD presumed “cause”

- Vascular Neck Restraint
- Prone positioning/Max Restraint
- Pepper/OC spray*
- Conducted Energy Weapon (Taser®)
- Excited Delirium

Vascular Neck Restraint
Carotid Hypersensitivity

- Reduction in heart rate re: jugular bulb pressure
- Causes fainting, not death
- Suspected IF:
 - RECURRENT fainting over age 55
 - 3-10% of REPETITIVE fainters have CHS
 - NOT a cause of fainting in <40 y.o.
- MDs do carotid sinus massage to document it
 - Diagnosis IF CSM induces faint (NOT death)
 - CSM ineffective in up to 30% with CHS
VNR Legal Actions

- Bodner vs MacDonald, Canada
 - Untrained application by apt security
- Steward vs Martay (BC Supreme court, Canada)
 - Non lethal outcome
 - GP:
 - “could have been very serious…
 - “this kind of trauma”
 - “could lead to the release of atherosclerotic plaques which could result in a stroke”
 - No evidence presented against; damages awarded.

VNR Injunction in USA

- Lyons vs City of Los Angeles
 - Non fatal outcome, traffic stop
 - Counsel statements:
 - “undisputed risk” of the lethality
 - “more than 15 cases of death occurred in LA since 1975”
 - No such risk reported in medical literature
 - Injunction against neck/carotid holds
 - Subsequently reversed by US Court of Appeals

How does VNR work?

Mechanism of loss of consciousness during vascular neck restraint

Jamie B. Whitehead,1,2,3,4 Dan E. Rush,1,2,3,4 John V. Tyberg,1,2,3,4 Joseph Beaulieu,2,3,4 and Robert S. Nehler2,3,4

1Department of Cardiac Sciences, Medicine, and Physiology and Pharmacology, The Lethbridge Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
2Submitted May 2011, accepted in final form 16 November 2011
Structures Involved

LOC in proper VNR by trained officer

- Sudden brief occlusion of BOTH carotids causes LOC
- Applies only to standard VNR / LVNR® (NLTEC)
- Not out in 15 seconds, not going...
- Loss of Consciousness is NOT:
 - Near death experience
 - Due to carotid bulb or vagus nerve stimulation
 - Due to respiratory obstruction

VNR video
Conjecture is not fact

- “...a source close to the Medical Examiner’s investigation said coroners are investigating whether the chokehold still contributed to Garner’s death.
- by aggravating his pre-existing condition of obesity, asthma and possible heart disease.”
- “If an obese person with co-existing medical problems can’t get good oxygenation to begin with, then a chokehold could put him over the edge,” and lead to a homicide finding, the source said.
- Even without damage to the throat, “the chokehold alone is pretty damning,” said civil rights lawyer Ronald Kuby.

Quarterbacking

- Was it a law enforcement sanctioned VNR?
- Science applies to standardized holds ONLY
- How long was the hold?
- Was there LOC during the hold?
- significant heart slowing (bradydysrhythmia) causes fainting/LOC
- CHS causes fainting/LOC at the time

Quarterbacking

- “I can’t breathe” is not just a respiratory complaint
- Garner’s preliminary autopsy showed no tracheal/hyoid damage
- VNR does NOT induce low oxygen state or “asthma”
- Asthma history is irrelevant
- Cardiac events also cause people to say “I can’t breathe”
- Morbid obesity is a risk for cardiac death during exertion
- Tachydysrhythmia (fast heart rhythm) untraceable past mortem
Physical risk groups for neck restraints like VNR

- The obvious elderly
- C Spine degeneration
- Carotid Hypersensitivity is possible
- Children obviously under age 11
- C spine anatomy
- Large head on small neck

Anatomic differences

Risk groups (physical)

- Visibly abnormal features
- you can’t know what the syndrome is
- Down’s syndrome
- Unstable C spine ligamentous structure
- Asymptomatic, undetectable from the outside
Down's syndrome neck

Normal adult

Down's syndrome and Atlanto-Axial instability

RISK group (physical)

- Visible obvious pregnancy
- Risk to fetus due to fall
- Not all pregnant women are easily identified “soccer moms”

TERMINOLOGY Risk

- Terminology infers RISK
- CHOKE= respiratory inference
- Do NOT use the term:
 - Choke hold
 - Choked ‘im
 - Chokin’ him out
 - Carotid sleeper hold
- does that come with a CAPE?
PEPPER/OC SPRAY and SICD

- Chan et al, J Forensic Sciences, 1992
- No difference in pulmonary measures vs placebo
- No difference in any position including PMR
- No hypoxia (low oxygen)
- No hypercarbia (high carbon dioxide)

The Effect of Oleoresin Capsicum “Pepper” Spray Inhalation on Respiratory Function
2015 J Forensic Legal Medicine, Toprak et al

- There are “no specific findings” in suspected death associated with RCA use
- Sole cause vs contributory based on elimination of other possible causes

Conclusions from Toprak et al

- Specifically structured autopsy is essential
- Examination of clothing, eyes, and skin
- Examination of pharyngeal, tracheobronchial, and esophageal mucosas
- Thorough recording of the use of force, including other possible causes of in-custody death
- Detailed medical history of the deceased
- All forensic autopsy requires formal approach

Pepper spray injury severity: 10 yr case experience of a poison control system

- 3,671 cases evaluated
- 249 cases (6.8%) severe symptoms warranted a medical evaluation.
- No deaths. (97.5% CI 0, 0.1%)
- The cases with more severe symptoms:
 - Ocular (53.8%), respiratory (31.7%), dermal (17.7%)
 - 1 in 15 exposures needs medical assessment
- More severe outcomes include:
 - Law enforcement training (OR, 7.4)
 - Intentional exposure (OR, 3.0); LEO target/crowd (OR, 2.5)
Positional Asphyxia

DEFINITION: sustained abnormal body position that impedes the upper airway or chest such that ventilation is impaired over a protracted period of time.

Positional asphyxia/restraint asphyxia

- Theory that prone/maximal restraint = asphyxia in law enforcement introduced by Reay in early 90's
- Series of 3 cases
 - Each died en route to hosp in police car
 - All agitated at the time of restraint
- NB: Case series' generate hypothesis only
- The case series led to Reay's scientific experiment

Effects of Positional Restraint on Oxygen Saturation and Heart Rate Following Exercise

- 10 subjects, cross country ski machine
- Pulse oximetry and heart rate monitored
- Unrestrained vs. prone + hogtie for recovery
- Concluded:
 - positional restraint has measurable physiologic effects
 - relevance to sudden, unexpected death unclear
 - should be considered if death handcuffed prone
 - additional research needed to understand the pathophysiology
Actual Results

TABLE 1. Oxygen saturation recovery time in minutes

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unrestrained</th>
<th>Restrained</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.83</td>
<td>1.25</td>
<td>+51</td>
</tr>
<tr>
<td>2</td>
<td>1.06</td>
<td>1.25</td>
<td>+19</td>
</tr>
<tr>
<td>3</td>
<td>1.01</td>
<td>1.15</td>
<td>+14</td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>1.25</td>
<td>+0</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>1.03</td>
<td>+3</td>
</tr>
<tr>
<td>6</td>
<td>0.95</td>
<td>1.13</td>
<td>+16</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>1.13</td>
<td>+12</td>
</tr>
<tr>
<td>8</td>
<td>1.13</td>
<td>2.80</td>
<td>+168</td>
</tr>
<tr>
<td>9</td>
<td>0.23</td>
<td>1.21</td>
<td>-499</td>
</tr>
<tr>
<td>10</td>
<td>1.11</td>
<td>1.13</td>
<td>+2</td>
</tr>
<tr>
<td>Mean</td>
<td>0.95</td>
<td>1.28</td>
<td>+30</td>
</tr>
</tbody>
</table>

Oxygen saturation recovery occurred when oxygen saturation percentage reached baseline levels.

- Results in REAL time:
 - Sitting time to "recovery" PMR time to "recovery" Difference
 - 0.95 min 1.28 min 0.33 min
 - 57 seconds 77 seconds 20 seconds

Issues

- Oxygen saturation change reported is erroneous
- Error of the oximeter
- Physiologically does not happen*
- Does not achieve statistical significance when actual times used
- Relative times (%)
- Time difference to recovery meaningless in real life
- Paper has been retracted
 - still cited as reference for physiology of "positional asphyxia" in law enforcement situations

Weight Force During Prone Restraint and Respiratory Function

- Investigated the effects of up to 50 lbs on the back in Position of Maximal Restraint (PMR)
- Sitting/PMR/PMR+25, PMR+50
- 5 minutes into the position mean % pred FEV1 was lower
 - no difference with and without weight
 - Mean spO2 levels remained above 95%
 - EtCO2 levels remained below 45 mm Hg [no hypercapnia/decrease in ventilation]
- 5 different positions: supine, prone, PMR no weight, PMR +50lbs, PMR 100lbs
 - HR, BP, O2 sat; echocardiography

- PMR with and without weight force: no significant changes in oxygenation or cardiac function.

Effects of maximal prone on MVV with up to 102 kg on the back

- 90-102.3kg on back:
 - MVV 85% of predicted and 70% of measured MVV
 - In other words, within normal limits
- Oxygen consumption while in PMR compared to maximal effort on a treadmill
- PMR less metabolically taxing during 60 second struggle than max treadmill

What about obese subjects?
Sloane et al

- 10 subjects, BMI >30
- Heavy exertion on cycle erg to 85% max
- Random allocation to seated cuffed, prone only, PMR x 15 minutes
- Every 5 min analysis and no difference in
 - Mean BP, HR, minute ventilation, O₂ sat, eICO₂
 - No desaturation or hypoventilation

Criticisms of volunteer subject study

- "Healthy" volunteers
- Lack of drug and alcohol intoxication
- Lack of mental illness
- Cannot exercise to physiologic exhaustion
- Force and restraint "simulated"
- Sloane’s study considered a pilot and inadequate
 - Same size as Reay, tighter methodology, yet ignored

Odd that those who criticize experiments seem to accept Reay findings happily.

Epidemiologic research:
Prone positioning in real encounters
Update

Context for Use of Force

Table 1: Demographic: 99% of the 457 use of force events recorded demographic data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>95% CI of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1996</td>
<td>35 ± 12.3</td>
<td>35</td>
<td>28.7 – 41.7</td>
</tr>
<tr>
<td>Any contraindication (alcohol, drugs, and/or mental illness)</td>
<td>1000</td>
<td>45 ± 12.3</td>
<td>45</td>
<td>39.7 – 50.7</td>
</tr>
<tr>
<td>1 or more features of HAF</td>
<td>1000</td>
<td>45 ± 12.3</td>
<td>45</td>
<td>39.7 – 50.7</td>
</tr>
<tr>
<td>Any contraindication (alcohol, drugs, and/or mental illness)</td>
<td>2008</td>
<td>48 ± 12.5</td>
<td>48</td>
<td>41.8 – 54.5</td>
</tr>
<tr>
<td>1 or more features of HAF</td>
<td>2008</td>
<td>48 ± 12.5</td>
<td>48</td>
<td>41.8 – 54.5</td>
</tr>
</tbody>
</table>

University approved in 4 cities through scientific and ethical research boards. “IRB approved”

Again, IRB approved under same protocol in 4 universities.
Context of Use of Force

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>% of cohort</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>87.5%</td>
<td></td>
</tr>
<tr>
<td>Median age</td>
<td>32</td>
<td>Youngest 18; oldest 79; mean age 32</td>
</tr>
<tr>
<td>Abnormal</td>
<td>81.5%</td>
<td>Officer assessment at scene</td>
</tr>
<tr>
<td>Alcohol only</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Drugs only</td>
<td>7.8%</td>
<td></td>
</tr>
<tr>
<td>EDP only</td>
<td>8.2%</td>
<td></td>
</tr>
<tr>
<td>All 3</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>3 or more ExDS</td>
<td>11.4%</td>
<td>Standardized recording</td>
</tr>
<tr>
<td>6 or more ExDS</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

Final position known in 4373

<table>
<thead>
<tr>
<th>Position</th>
<th>N</th>
<th>% of cohort</th>
<th>Difference</th>
<th>95% CI for difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prone</td>
<td>2015</td>
<td>46.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Prone</td>
<td>2358</td>
<td>53.9%</td>
<td>7.8%</td>
<td>(5.7, 9.0)</td>
</tr>
</tbody>
</table>

Those with ExDS features: prone vs not prone

<table>
<thead>
<tr>
<th>Features</th>
<th>Prone (%)</th>
<th>Not Prone (%)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or more ExDS</td>
<td>206 (10.2%)</td>
<td>293 (12.4%)</td>
<td>2.2% (sig)</td>
</tr>
<tr>
<td>6 or more ExDS</td>
<td>13 (1.6%)</td>
<td>33 (2.3%)</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Conclusions from proning

- Study has power to detect 0.5% difference in death between the groups
- Single death* (not prone):
 - Cannot determine direct association between proning and death
 - Thousands of subjects were prone and did not die
 - Including abnormal, CEW, ExD
 - Worst case scenario is 99.8% expected to survive either position

Prone position in law enforcement

- Policies that demand non prone positioning may not be risk avoidant
- Human beings show distress on the face
- Monitor the subjects face
- Move to non prone position when operationally safe
- Leaving subjects proned for prolonged periods has not been studied and should be avoided

CEW use not different: prone vs not prone

<table>
<thead>
<tr>
<th>CEW use</th>
<th>2015 prone subj</th>
<th>2015 not prone subj</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any CEW use</td>
<td>31.5 (15.4%)</td>
<td>35.6 (15.2%)</td>
<td>NS</td>
</tr>
<tr>
<td>Light only</td>
<td>94 (4.7%)</td>
<td>105 (4.5%)</td>
<td>NS</td>
</tr>
<tr>
<td>Deployed and mode recorded</td>
<td>265 (10.2%)</td>
<td>236 (10.1%)</td>
<td>NS</td>
</tr>
<tr>
<td>Contact stun only</td>
<td>92 (2.4%)</td>
<td>61 (2.4%)</td>
<td>NS</td>
</tr>
<tr>
<td>Probe mode only</td>
<td>129 (6.4%)</td>
<td>148 (6.3%)</td>
<td>NS</td>
</tr>
<tr>
<td>Combi</td>
<td>24 (1.2%)</td>
<td>27 (1.1%)</td>
<td>NS</td>
</tr>
</tbody>
</table>
A plea

- Separate Sudden In Custody Death training from Taser training
- Prentice Case, Alberta
- Distinct concepts, different in focus
- ExD/SICD training should be with Use of Force training
- This is NOT an exhaustive review of CEW
Key findings

- Not all CEW is Taser
 - Each must be evaluated on its own merit
- Multiple modes
 - Probe has most potential for harm
- CEW waveforms underlying principles:
 - a train of short duration impulses with specific waveform
 - will stimulate motor and sensory nerve
 - too brief to stimulate other muscle

“50,000 volts” is irrelevant

<table>
<thead>
<tr>
<th>Electrical Source</th>
<th>Peak Voltage (V)</th>
<th>Peak Impulse Duration (ms)</th>
<th>Energy Released (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning strike</td>
<td>60,000</td>
<td>1 million</td>
<td>0.01</td>
</tr>
<tr>
<td>Aircraft Main Landing Ground</td>
<td>60</td>
<td>2,000</td>
<td>0.1</td>
</tr>
<tr>
<td>North American Armoured Train</td>
<td>15</td>
<td>125</td>
<td>Varies</td>
</tr>
<tr>
<td>Taser M26</td>
<td>17</td>
<td>10,000</td>
<td>Varies</td>
</tr>
<tr>
<td>Taser M26 XT</td>
<td>30-34</td>
<td>0.3 to 1.5</td>
<td>Varies</td>
</tr>
<tr>
<td>Taser M26 XT Prog</td>
<td>2</td>
<td>600-900</td>
<td>Varies</td>
</tr>
<tr>
<td>Non-invasive Electrolysis Therapy (NLET)</td>
<td>0.5-0.9</td>
<td>50-500</td>
<td>0.2-1.0</td>
</tr>
<tr>
<td>Transcutaneous Electrical Current (TEC)</td>
<td>0.1 maximum</td>
<td>50-500</td>
<td>0.05-0.25</td>
</tr>
</tbody>
</table>

Additional notes:

- “50,000 volts” is irrelevant.
- Each CEW must be evaluated on its own merit.
- Multiple modes exist, with the probe having the most potential for harm.
- CEW waveforms stimulate motor and sensory nerve but are too brief to stimulate other muscle.
Waveform matters...
these are from Taser®

Mode and dart location
- Contact/push/drive stun not associated with cardiac dysrhythmias
 - Nanthakumar, Valentino
- Probe mode deployment most criticized
- Extensive animal study, emerging human study
 - Stratbucker first studies
- Degree of incapacitation dependent on probe spread
 - Alleged increase in cardiac capture in probe mode

Swerdlow et al, AEM, 2009

The time sequence and electrode location are both consistent with electrically induced VF in one subject (subject 1), and neither drug use nor cardiac disease provides alternative explanations. To the best of our knowledge, this is the first reported fatality suggestive of CEW-induced VF.
Why is probe location important

- Nanthakumar et al
 - Multiple CEW discharges in swine
 - ONLY myocardial capture with darts bracketing the heart
 - NO myocardial capture with darts anywhere else
 - Including when IV epinephrine used
 - Similar concerns with Valentino et al
- Webster et al
 - Dart penetration of 17 mm increased cardiac capture - issue in thin chested individuals

Dart location

- Knowing where darts landed to document risk
- Missed deployments are important
- Darts not on the chest do not cause cardiac disruption
- Drive stun anywhere does not cause cardiac disruption
- RESTRAINT study (~500 deployments)
 - 56% of all deployments had paired probes
 - Transcardiac vector in 18% of deployments with paired darts and location known
 - No deaths

Overall Effects of CEW

- Absence of evidence on neuroendocrine, respiratory and cardiac effects means “more study is needed”
- CEWs induce catecholamine release
- Animal studies indicate an association between resp complications and prolonged CEW discharges
- Jauchem et al
- Healthy humans demonstrate resp effects similar to prolonged exercise
- Ho et al
- More study required:
 - Heterogenous groups
 - Prolonged or repeated exposure
Example:

Implications of Zipes' paper

- Case series
- Introduces a HYPOTHESIS
- Induction of VF
- Includes a drive stun case
- Retrospective case series with selection bias
- Does NOT determine causation
- Does NOT estimate risk

Bozeman et al

- 1201 field deployments in 36 months
- 94% male, median age 30 years
- Mild or No injury in 99.75%
- 83% puncture wounds
- Significant injuries in 0.25% (3 subjects)
- 2 intracranial injuries from falls
- 1 case of rhabdomyolysis
- 2 subjects died, not of CEW deployment (neither causal nor contributory)
The company (TI) and its hired experts...have taught us about an emerging disorder called "excited delirium..."...Tasers nevertheless appear to be the leading risk factor associated with sudden death due to excited delirium..."

- Nova Scotia, Canada
- Autonomic Hyperarousal Syndrome
- UK
- Acute behavioral syndrome
- Now back to ExDS
Diagnosis or not?
- Currently NOT a diagnosis of its own
- AMA, CMA, DSM IV
- Case definition is pending
- Frequency
- Effects/rate of death
- Is a state with many possible underlying causes
- Officers can recognize and record its features
- The underlying diagnosis is irrelevant at the scene
- Subject behavior determines officer response
- Presence of ExD determines aftercare

Excited Delirium: some of the confusion
- Many MD’s have limited knowledge of agitation
 - Practice specific; psych bias
- No reliable indicators of impending death
 - Other than state of ExDS
- Assumption ExDS = Taser related death

Delirium
- A state of altered level of consciousness with impairment of cognition AND perception
- A symptom of an underlying disorder and is NOT a diagnosis of its own
- A continuum of behavior from flat/quiet (obtunded) to extreme agitation
ICD-9 and 10 codes for delirium/excitement

- 799.2X Abnormal excitement
- 799.2AM Psychomotor excitement
- 799.2V Psychomotor agitation
- 296.00S Manic excitement
- 307.9AD Agitation
- 780.09E Delirium
- 293.1J Delirium of mixed origin
- 292.81Q Delirium, drug induced
- 292.81R Delirium, induced by drug

WHO ICD-9 / ICD-10
International classification of diseases
Excited delirium some underlying causes

- Psychiatric illness:
 - acute psychosis
 - acute manic crisis (bipolar)
 - not personality disorder unless drugs/ETOH
- Drug intoxication:
 - Street drugs: coke, meth, bath salts*, PCP, alcohol, ecstasy, ’shrooms
 - “cocaine excited delirium” is just ExD
 - Rx drugs: tricyclic antidepressant OD
 - OTC’s: Gravol®, Benadryl®
- Combination of psych illness and drugs
- Medical illnesses

For the next case

- How will the officers describe the situation?
- Will they have been trained about ExD?
- What about medics?
- What will bystanders recall?

Tim video
What’s wrong with Tim?

- Why don’t you know?
- What information do you need?
- What information do you have?
- Can you diagnose the underlying condition at the scene?
- Does it matter if you could?
- What is your evidence for a state of excited delirium?

Clues to ExDS at call taker/dispatch

- Known or suspected psychiatric illness
 - Especially schizophrenia or mania
- Known or suspected drug/alcohol intoxication
- Multiple previous calls to the same location/for the same individual
- Agitated, bizarre or destructive behavior
- Call takers can be trained/info must be relayed

Clues to ExDS on arrival

- Bizarre, irrational behavior
- Constant yelling/screaming/“keening”
- Aggression toward inanimate objects
- Glass attraction
- Inappropriate attire: often naked or semi clothed
Clues to ExDs on contact

- Does not respond appropriately to police presence
- Insensitivity to pain mediated restraint:
 - stuns and strikes, baton, OC spray, K9, bean bags, drive stun
- May have very hot skin
- May or may not sweat profusely
- May seem profoundly dry
- Much of this might not be recognized until after

The Struggle

- Apparent superhuman strength
- Usually require multiple officers
- Strength out of proportion with physical traits
- Violent struggling despite futility
- Struggling against handcuffs, hobble >15 min
- Facial smashing in vehicle
- Kicking windows of vehicle

Barber video
Features of the death

- Occurs once subject is “successfully” restrained
- Occurs within ~5 minutes of subject becoming quiet
- First symptom of impending death is the death
- Virtually never* successfully resuscitated
- Occurs in police cars, cells, ambulances and hospitals

Every restraint modality has been blamed

- 70’s nightstick/lateral vascular neck restraint*
- 80’s multiple officers, positional asphyxia
- 90’s pepper spray
- 2000’s: Taser®/CEW
- Excited delirium predates Taser®
 - Pollanen 1998: deaths in ExD
 - Ross et al 1998: 77% die at the scene or in transport.

ExD features
How often are ExD features seen?

<table>
<thead>
<tr>
<th>Number of Concomitant Features</th>
<th>2015 data</th>
<th>% Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.2</td>
<td>10%</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>2</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>1</td>
<td>55.6</td>
<td>55.6</td>
</tr>
</tbody>
</table>

97 ~12%
98 ~2%

So?

- Giving officers a list of features does not compel them to find them present
- MOST police public interactions do not involve force
- MOST use of force events do not involve ExD
- However, when force is used:
 - 1 in 8.5 use of force events is >3 features ExD (12%)
 - 1 in 44 use of force events is >6 features of ExD (2.3%)

Hang on, it’s physiology…
Physiology of the collapse...points for investigation.

- Previous theories...
- Dopamine transport abnormalities
- Drug/psychiatry
- Metabolic acidosis
- Cocaine induced MI/arrhythmia
 - Not all cocaine autopsy negative
 - Post exercise potassium shift?
- Cocaine induced cardiomyopathy/ LVH
 - The vulnerable heart?
- Rhabdomyolysis

Dopamine transport...eek!

Methamphetamine
Bath Salts:
3,4 Methylenedioxypyrovalerone
- Sniffed, snorted, smoked or injected
- Onset nearly immediate, lasts 2-4 hours
- Repetitive doses common for days
 - Increased cravings and early addiction
 - Multiple contaminants
 - All users report psychosis, self mutilation common

How do bath salts work
- MDPV, Mephedrone, Methylenone all work the same way
- ~9 x affinity for dopamine receptors as Cocaine
- D1/D2 overstimulation = hallucinations, ExDS
- Altered perception and central analgesia
- Self mutilation and insensitive to pain
- Sound familiar?

Salts video
Dopamine transport is abnormal in ExDS

- Dopamine transport is abnormal in psychotic illnesses/cocaine/meth
- D2 receptors' abnormality
- Increased receptors but also down-regulated reuptake
- Unchecked D1 activity
- ExDS deaths have clear Dopamine transport abnormality on post mortem brain section
- Dr. Debra Mash, U of Miami
- 1-800-UMBRAIN

Metabolic acidosis

Metabolic Acidosis in Restraint-associated Cardiac Arrest: A Case Series
John L. Beck, MD, Stephen W. Smith, MD, Michael T. Lynch, MD

Abstract. The mechanism of death in restraints is often unexplained. Struggling against restraints results in a type of asphyxia. Postmortem examination of the restraints victim’s brain may reveal evidence of metabolic acidosis. The highest mortality pH has been 6.2, but others report values between 6.7 and 7.0. This phenomenon is consistent with the metabolic acidosis that accompanies hypothyroidism. The postmortem pH may provide a clue. Analysis of blood samples from restraints victims shows a significant rise in acidosis. Metabolic acidosis may provide further evidence of hypothyroidism and unusual restraint techniques.

Investigation of that

- EMS run sheets
- What was the initial heart rhythm
- Hospital records
 - Vital signs including temp
 - Blood work: serum electrolytes, blood gases, lactate
- Autopsy
 - Vitreous humor pH
- Know what to ask for, make copies, get MD interpretation and testimony
Excited Delirium: uncovering the physiology

- Final pathologic pathway not yet defined
- NIJ study in progress
- Much evidence not testable
- Pre or post mortem
- Details of the events may be the only clue:
 - situational and subject characteristics of ExDS
- Serum levels for tox can reveal illicit drugs
 - Femoral blood/vitreous/brain
 - Level of intoxication not predictive

“They should have just taken him to the hospital”

- Who?
- How?
- There is NO therapy without physical control
 - In ExDS, voluntary physical compliance unlikely
 - RNs and MDs cannot assess a physically aggressive unrestrained person
 - Psychiatrists do not undertake assessment or treatment of acutely delirious persons

Pharmacologic Restraint (sedation)

- Should be implemented at the scene *where possible*
- EMS limitations
- ALS vs BLS
- Medical protocols/medical directors
- There is no blowdart
- Dosing and administration
- Errant darts/Escaped subjects
- Sedation is NOT a police procedure
Multi disciplinary approach

- Cooperative agreements?
- Dispatch procedures?
- Default to EMS is NOT a policy
- BLS vs ALS
- Transport
- Drug Protocols
- i.e. Champaign, Illinois
- What happens at the hospital
 - Police knowledge is ahead of medical knowledge

ExD Indicators

- The condition referred to as “excited delirium,” whether a distinct entity or a syndrome of other diseases, disorders, and conditions, constitutes a medical state.
- Subject can present a number of signs and symptoms in low arousal settings.
- Uncontrollable or impulsive behavior.
- Subject not exposed to stressors.
- Intact cognitive or behavioral abilities.
- Subject is preganant.
- Subject has a history of medical illness.
- Subject has a history of psychiatric illness.
- Subject has a history of drug use.
- Subject has a history of alcohol use.

ExD Response Measures

- Identify
 - Observe and record the signs and symptoms exhibited by this syndrome for early medical intervention.
 - Handle primarily as a medical condition.

- Contain/defuse/contain subject as soon as possible to decrease problems related to a prolonged struggle.

- Apply relaxation techniques as soon as possible to prevent further harm from physical aggression.

- Transport
 - Send to hospital as soon as possible for medical treatment.

Summary

- Use of force is rare
 - Scientific study cannot explain away inappropriate use of force
- Sudden in custody death is rare
 - 1/4828 or 0.02% UofF
 - 1/3,250,000 interactions or 0.00003% of police interaction
 - 1/100 subjects with 6 or more ExD features (1%)
- The behavior of the subject during the event is extremely important
 - 1 in 8.5 use of force events has >3 ExD features
 - Subject who died in our study had all 10 features
• No force modality has proven causal in sudden in custody death
• Know where CEW darts went
• Positional asphyxia exists but is not the same as transient prone positioning
• Sedation at the scene is not a guarantee of safety
• Forensic autopsy is necessary, medical records are essential

Questions?

chrishealmmd@gmail.com
Original communication

Frequency of signs of excited delirium syndrome in subjects undergoing police use of force: Descriptive evaluation of a prospective, consecutive cohort

Christine Alison Hall MD, Emergency Department Physiciana,b,*, Adam Shereef Kader B.Sc, Analystb, Anne Marie Danielle McHale B.Com, Medical Studentb, Lauren Stewart B.Sc (Hons), Analystb, Gordon Hilton Fick PhD, Professor of Biostatisticsa, Gary Michael Vilke MD, Emergency Department Physicianc

aFaculty of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
bFaculty of Medicine, Department of Emergency Medicine, University of British Columbia and Vancouver Island Health Research, Victoria, BC, Canada
cUniversity of California, San Diego Medical Center, Department of Emergency Medicine San Diego, California, USA

\textbf{Article info}

\textbf{Article history:}
Received 29 August 2011
Received in revised form 1 May 2012
Accepted 29 May 2012
Available online xxx

\textbf{Keywords:}
Use of force
Excited delirium syndrome
TASER
Drugs

\textbf{Abstract}

There has, to date, been no prospective description of the frequency with which police officers encounter individuals who display signs of excited delirium syndrome (ExDS). The ability to document the relationship between signs of excited delirium and subject outcomes and then determine the underlying pathophysiology that results in morbidity and mortality is necessary in order to determine the case definition for ExDS in live individuals. We prospectively evaluated the frequency of signs of ExDS in a cohort of consecutive subjects undergoing use of force by law enforcement officers (LEOs) and determined the frequency with which those features were encountered alone and in combination. Data were collected prospectively for all subjects undergoing use of force (UOF) by LEOs in a single police agency from August 2006 until August 2009. Ten previously published signs of ExDS were prospectively recorded by officers: pain tolerance, constant/near constant physical activity, not responding to police presence, superhuman strength, rapid breathing, not tiring despite heavy physical exertion, naked/inappropriately clothed, sweating profusely, hot to the touch, and attraction to/ destruction of glass/reflective surfaces. UOF occurred in 1269 of 1.56 million police—public interactions (0.08%, 95% CI 0.08, 0.08%). Of subjects undergoing police use of force, 1101/1269 or 86.8% (95% CI 84.8%, 88.6%) were assessed as having effects of emotional disturbance, drugs, alcohol or a combination of these comorbidities at the scene at the time of the UOF and 837/1269 or 66% (95% CI 63.3, 68.6) were violent at the time of the UOF. One person died in our cohort who was experiencing 10 concomitant features of ExDS at the time of the UOF event. With only one death in our 3 year prospective cohort, we cannot comment on causality or correlation between number of Excited Delirium signs and mortality. Further study must be undertaken to determine whether correlation exists between higher numbers of ExDS signs and physiologic measures of acute underlying pathology in live subjects.

\textbf{Conclusions:}
Law enforcement officers and other prehospital care providers can recognize and describe symptoms of ExDS in the field at the time of interaction. Even though police use of force is rare over 15%, or approximately 1 in 6, of individuals undergoing police UOF have 3 or more concomitant signs of Excited Delirium at the time of the UOF event. The single death in our cohort who was experiencing 10 concomitant features of ExDS at the time of the UOF event. With only one death in our 3 year prospective cohort, we cannot comment on causality or correlation between number of Excited Delirium signs and mortality. Further study must be undertaken to determine whether correlation exists between higher numbers of ExDS signs and physiologic measures of acute underlying pathology in live subjects.

© 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
1. Introduction

Excited delirium syndrome (ExDS) has been defined by DeMaio as “combative and/or violent behavior” associated with delirium which is, “an acute (minutes to hours), transient disturbance in consciousness and cognition; disorganized and inconsistent thought processes; inability to distinguish reality from hallucinations; disturbances in speech; disorientation to time and place; misidentification of individuals.”¹ The majority of the medical literature on the topic of excited delirium syndrome comes from forensic scientists and medical examiner offices, reviewing post-mortem presentations.²⁻⁶ There are a number of other cohort reviews and case series that try to define presenting features/characteristics of ExDS but are limited by the retrospective review process that relies on spontaneous documentation of non standardized information.⁷⁻⁹ That methodology enables some evaluation of reported clinical characteristics of ExDS but recording bias precludes the ability to accurately determine what proportion of subjects encountered by police officers can be anticipated to have signs of ExDS at the time of the police public interaction. Recently, the American College of Emergency Physicians (ACEP) convened a task force to better review this topic and their findings were published confirming that ACEP has joined the National Association of Medical Examiners (NAME) in recognizing ExDS as a diagnostic entity.¹⁰ However, there is not a succinct case definition of excited delirium syndrome at the present time, in part because there has not been prospective documentation of the frequency with which features occur alone and in combination in the diverse cohort of individuals who interact with police. Additionally, failure to describe the clinical features of Excited Delirium Syndrome in live individuals means that clinical measures of underlying pathophysiology have not been evaluated in specific groups of individuals demonstrating signs of excited delirium syndrome prior to death. It is unknown whether there are specific clinical features that can define the tipping point between the simple presence of psychomotor agitation vs. the profound agitation and concomitant metabolic compromise of excited delirium that ends in a sudden and unanticipated death. It is unknown whether any specific symptoms or symptom clusters clearly predict morbidity or mortality for persons who display ExDS characteristics. Defining the frequency with which signs of ExDS are found in live individuals prior to death is the first step in determining a case definition for ExDS, in determining the group in whom physiologic assessment should be undertaken, in directing targeted interventions and in identifying the risk of death for persons with signs of ExDS.

We sought to prospectively describe the characteristics of subjects who undergo police use of force, to evaluate the frequency with which signs of ExDS were present alone and in combination in subjects undergoing use of force by police officers, and to determine the frequency of death in a cohort of individuals displaying those signs.

2. Methods

This was a prospective, single police agency and multiple receiving center study in which all subjects who were encountered by law enforcement officers and had use of force applied to them were enrolled. Officers documented signs of excited delirium in these subjects prospectively by completing data fields that were buried within the in-car electronic use of force reporting documentation used by the agency. The clinical characteristics/signs that officers documented have been previously described as being suggestive of excited delirium syndrome and include: violent behavior, tolerance to pain, constant or near constant physical activity, subject not responding to police presence, superhuman strength, rapid breathing, does not tire despite heavy physical exertion, naked or inappropriately clothed for the environment, sweating profusely, hot to the touch, and attraction to or destruction of glass or reflective surfaces.¹⁰⁻¹² No specific training was given to officers regarding the definition of these clinical signs of excited delirium since each of these signs is a common sense, practical finding that is clinically obvious to even an untrained observer. For example, the variable “hot to the touch” was indicated present if the officer in contact with the subject perceived the subject’s skin as hot, it was not defined by a specific range of temperature. Signs of excited delirium were not mutually exclusive and officers could indicate any number of signs without restriction or could indicate that the subject displayed none of the features.

In addition officers recorded prospectively whether the subject, in the impression of police officers with information only available at the scene was suffering emotional distress, was intoxicated with drugs and/or was intoxicated with alcohol, was emotionally distressed and intoxicated with drugs and/or alcohol, or was demonstrating none of these comorbid conditions.

Patients were included if the officer implemented any use of force above the simple escortive behavior that is commonly referred to by police agencies as soft hands control. Thus, we defined the use of force as any of the following alone or in combination: use of physical stuns (application of a specifically targeted blow to a nerve plexus such as the peroneal nerve or the brachial plexus), physical strikes (kicks or open hand strikes) or physical takedown techniques (arm takedowns or leg sweeps), OC spray, baton and/or Conductive Energy Weapons (TASER X26) alone or in combination with any of the other force modalities, including firearms, described here. Every duty officer in the involved police service has access to a TASER and does not need to call for a supervisory oversight to use it. Special teams employ tactics such Arwin, beanbag, and K9, however, special teams activities are not included in the general duty statistics of this study.

The agency that participated is a municipal service whose contract is to police the entire metropolitan area of a large Canadian city. The police service has 1979 operational sworn officers and provides all policing services to all areas of the city, thus all use of force events are included in the data from this agency. The city has a population of 1,182,446, covering an area of 726.5 km² (280.5 sq mi) of urban, suburban, rural and remote areas.

Human subjects’ committee approval was obtained at the relevant University Institutional Review Board (IRB). We are prohibited by privacy considerations imposed by the IRB from identifying the relevant university in publication because the naming of that university in this publication enables the public identification of the single study subject who died. Data were entered into a database (Access, Microsoft Corporation, Redmond, WA) with 20% of the data double entered and cross checked for accuracy. Descriptive analysis was performed and observed proportions were determined with standard methods. CI’s were calculated using Stata© Version 10, Statacorp, Redmond, TX; with Yates’ continuity correction for small numbers where appropriate.

3. Results

Over the thirty-six month study period, 1269 use of force events occurred out of 1.56 million police public face-to-face interactions where officers were in the direct physical proximity of a member of the public; which determines that 0.08% (95% CI 0.08%, 0.086%) of all police public interactions included the use of force. In other words, in over 99.9% of police public interactions, no use of force above soft hands techniques occurred. This finding was stable across three years of study. Data was collected for all use of force events.

[Please cite this article as: Hall CA, et al., Frequency of signs of excited delirium syndrome in subjects undergoing police use of force: Descriptive evaluation of a prospective, consecutive cohort. Journal of Forensic and Legal Medicine (2012). http://dx.doi.org/10.1016/j.jflm.2012.05.008]
It should be noted that not all individuals with large numbers of concomitant clinical signs of ExDS had all the same signs. Cluster analysis was undertaken to determine whether a unifying cluster of core features was always present but it was not. Other than the predominance of violence (which was excluded) we did not find that individuals began with a core group of a few central standard features and then progressed stepwise through additional features until all of the known signs of ExDS were concomitant.

For the 1269 subjects in our study, we evaluated whether the presence of three or more concomitant signs of ExDS was associated with an increased odds of being assessed by officers to be under the influence of drugs and/or alcohol or to be suffering from emotional distress (Table 3). The odds of being assessed as being drug intoxicated or suffering from emotional distress were significantly higher for those individuals with 3 or more signs of Excited Delirium but individuals with 3 or more features of Excited Delirium were less likely to be assessed as alcohol intoxicated because alcohol intoxication was thought to be alone or in combination with drugs and/or emotional disturbance.

Because of previous study documenting the presence of hyperthermia in the presence of dopamine transport dysregulation and in excited delirium syndrome ending in death, we were very interested in the frequency of tactile hyperthermia (variable: hot to the touch) in the cohort of individuals undergoing police use of force simply described as an officer’s impression that the individual was hot to the touch. We found that a significantly larger proportion of individuals who were described as hot to the touch had 3 or more concomitant signs of ExDS as compared to individuals who were not described as hot to the touch by officers at the scene (Table 4). The difference in the proportion of individuals with three or more concomitant signs of ExDS is statistically significant at 66%, with a 95% confidence interval for the difference of between 33% and 71%, with Yates’ continuity correction.

4. Discussion

We found that police use of force was a rare event involving predominantly male subjects who were assessed by officers as being in states of intoxication and/or emotional distress at the time of the police public interaction. Privacy restrictions prevented us from obtaining an accurate all-inclusive list of subjects undergoing police use of force. 1269 individuals were included from a total of 14,547 individuals who were involved in an interaction with police.

Table 2

<table>
<thead>
<tr>
<th>Number of concomitant features</th>
<th>n</th>
<th>% Cohort (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>0.2 (0.05, 0.7)</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>0.9 (0.5, 1.6)</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>0.5 (0.2, 1.0)</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.6 (0.3, 1.2)</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.6 (0.3, 1.2)</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>2.5 (1.7, 3.5)</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>3.7 (2.7, 4.9)</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>5.9 (4.9, 6.9)</td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>10.9 (9.2, 12.7)</td>
</tr>
<tr>
<td>1</td>
<td>267</td>
<td>21.0 (18.8, 23.4)</td>
</tr>
<tr>
<td>0</td>
<td>655</td>
<td>51.6 (48.8, 54.4)</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Demographics, comorbidities assessed at the time of use of force and documentation of clinical features of Excited Delirium Syndrome (ExDS) at the time of use of force in 1269 consecutive subjects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Age (mean)</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Not recorded</td>
</tr>
<tr>
<td>Comorbidities assessed at the scene</td>
</tr>
<tr>
<td>Emotionally Disturbed Person (EDP) only</td>
</tr>
<tr>
<td>Alcohol only</td>
</tr>
<tr>
<td>Drugs only</td>
</tr>
<tr>
<td>No ExDS characteristics</td>
</tr>
<tr>
<td>Violent behavior</td>
</tr>
<tr>
<td>Pain tolerance</td>
</tr>
<tr>
<td>Hot to touch</td>
</tr>
<tr>
<td>Superhuman strength</td>
</tr>
<tr>
<td>Rapid breathing</td>
</tr>
<tr>
<td>Doesnt fatigue</td>
</tr>
<tr>
<td>Not responsive to presence</td>
</tr>
<tr>
<td>Sweating profusely</td>
</tr>
<tr>
<td>Hot to touch</td>
</tr>
<tr>
<td>Glass atraction//destruction</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Hall CA, et al., Frequency of signs of excited delirium syndrome in subjects undergoing police use of force: Descriptive evaluation of a prospective, consecutive cohort. Journal of Forensic and Legal Medicine (2012), http://dx.doi.org/10.1016/j.jflm.2012.05.008
from collecting data on all police public interactions, thus, our study cannot document the frequency with which police public interactions include individuals in a state of intoxication or emotional distress but do not include the use of force. The predominance of intoxication(s) alone or in combination with emotional distress illustrates the great situational difficulties that exist when a police public interaction becomes a use of force event. Given the profile of subjects in whom police used force in our study, it is anticipated that the nature of the individuals and situations at play may significantly hamper the applicability of and anticipated success from verbal de-escalation techniques in some situations.

Further, we believe the finding that 99.92% of police public interactions did not involve a police use of force across three consecutive years of study is important in emphasizing the success that most officers have in interacting with most members of the public; a finding that does not cry out for widespread improved de-escalation training. These findings are consistent with those of other authors who document police use of force at 1% or less of police public interactions.13 Even with evidence of abnormally behaving subjects, there were only 1269 use of force incidents in over 1.5 million total police public interactions where a police officer and a member of the public were within physical proximity. We did not restrict our study to upper level uses of force, but rather began our data collection as soon as more than simple escortive situations were used and we are confident that even relatively low levels of police use of force are reflected in our cohort.

Some will argue that sudden in custody death has occurred with force applications as simple as a pair of handcuffs, but since sudden in custody death has been documented primarily in agitated, incoherent and struggling individuals, we would raise the question of how those handcuffs came to be applied in an incoherent individual without at least some contact above simple escortive action and prior to the end of the shift by one of the officers.15,16 While the majority of our study subjects had few concomitant characteristics, we believe that, in keeping with previously published research on sudden in custody death, those rare subjects with many concomitant features of ExDS represent the high risk group in whom sudden in custody death occurs.1,14–17 The only subject who died in our study had all 10 features of ExDS concomitantly at the time of his interaction with police. Describing prevalence with which multiple concomitant features of excited delirium syndrome are encountered enables the next step, which is to link the observations of excited delirium features in the field to medical outcomes analysis and to complete physiologic investigation in individuals with higher numbers of signs of Excited Delirium to determine where, in live individuals, a case definition of excited delirium rests.

We found that within the group of individuals with three or more concomitant features, there is variation in the exact features in each individual. Cluster analysis proved fruitless in determining a specific central cluster of signs seen in all persons with higher numbers of signs of ExDS. We believe that this is because multiple underlying pathologies are at play in the generation of an agitated state in individuals with whom police interact.18–20 For example, even though the initial descriptions of excited delirium came from cases involving cocaine intoxication, cocaine was not a drug of use in our cohort with all ten features of ExDS, one was described by officers as suffering from emotional distress alone, the other two were described as a combination of emotional distress and drug intoxication. Either way, it is clear that officers can recognize multiple features of ExDS in the field, and do not always attribute those features to drug intoxication alone. This is an important point in the education of police officers and other prehospital personnel. It is an error in judgement to assume that signs of Excited Delirium are only associated with illicit drug use and that individuals with agitation and delirium thus are best processed through legal venues. If interventions are to be made in mitigating death, the point in having police officers and other prehospital personnel recognize the presence of multiple features of ExDS is to expedite the transport of that individual for medical assessment and care. Immediate medical attention can only be optimized if ExDS signs are recognized and personnel are given the tools to do so.

The presence of tactile hyperthermia (being described as hot to the touch) emerged as an interesting characteristic that also gives credence to the presence of many concomitant features as being representative of an abnormal underlying physiologic process. People in our study who were described by officers as being hot
were significantly more likely to have three or more characteristics of ExDS than those who were not described as being hot. Anecdotally, in two individuals who the officers described as hot, case notes included spontaneous comments such as “he was a human blast furnace” and “I could tell he was hot from three feet away”. In our cohort, all 21 subjects who had 8 or more concomitant features were described as hot. Other researchers have examined the physiology through which excited delirium may become a fatal state and dysregulation of dopamine receptors with resultant uncoupled heat regulation has been discussed as a potential harbinger of death. Whether the presence of tactile hyperthermia predicts morbidity or mortality, and thus serves as a “tell” for police officers in anticipating imminent death remains to be seen. Even though the individual who died in our study was described as hot to the touch, the presence of a single unexpected death in three consecutive years of our study does not enable statistical evaluation of the association between this feature and death.

The individual who died suddenly during our prospective data collection displayed all 10 features of excited delirium concomitantly at the time of the police use of force. However, the presence of a single death in our study does not enable statistical evaluation of the number or nature of features of Excited Delirium as a predictor of death. We continue to collect data in order to further investigate this important question.

At this time, because of the rare occurrence of death in custody in our cohort, our study is limited to defining the incidence of Excited Delirium clinical characteristics in subjects who underwent police use of force, using a definition of use of force that begins at the lowest possible level of actual force application. Privacy restrictions prevented retrospective evaluation of police records for the presence of ExDS features in all individuals who were in contact with police for any reason during the study interval. There is little doubt that individuals with some features of ExDS interact with police and no force is used. However, because use of force defined the entry point for our study, we are unable to comment on the frequency of or outcomes for individuals with features of ExDS, emotional disturbance and/or intoxicated states in subjects who do not undergo police use of force.

Similarly, while there is little doubt among researchers and police agencies that some individuals who demonstrate ExDS symptoms find themselves repetitively the subjects of police interest, privacy laws prevented the collection of subject identifiers, thereby eliminating our ability to evaluate our data for repetitive contact with the same individual. It is anticipated that within this cohort, there are some individuals who are multiply represented. Even so, each time an individual interacts with police represents a new clinical situation with new clinical risks and as such even multiple presentations of the same individual add to the body of knowledge regarding the frequency with which police officers encounter the entity ExDS in the field. We hope to work with privacy protection regulations such that this variable can be evaluated in future.

Data for this study were collected by police officers at the scene at the time of their interaction with the subject of interest. Data recorded reflect the officers’ impressions of the situation at the time of the event and do not rely on post hoc confirmation of the presence or absence of specific medical diagnoses or toxidromes. While it is enticing to request correlation of such findings with toxicology assessment made following the use of force event, the reality is that many subjects are not and need not be transported to hospital and those that are do not often have comprehensive toxicology assessments carried out. Thus, reliance on toxicology assessments to determine which subjects were and were not intoxicated would result in significant measurement bias in allocating those descriptors. The results of our study and the categorizations within it are reflective of real world practice and the officers’ assessment of comorbidity reflects the true street environment in which operational decisions are made. These decisions are and will continue to be based on information that is immediately available at the scene, based on the assessments of the personnel in contact with the individual without the ability to clarify or confirm, and without the luxury of time to make a detailed management decision based on information that cannot be gained until after the fact. The construction of decision making strategies or algorithms to manage individuals with proven intoxication in one manner and emotionally disturbed individuals with negative toxicologic screens in another would be completely arbitrary and useless on the street. Lastly, the immediate emergency treatment of the undifferentiated agitated and combative patient does not depend on a completed toxicologic assessment but is based in the use of broad spectrum sedating agents with the goal of gaining physical control of the individual in order to begin to manage the effects of sympathetic stimulation regardless of the underlying cause.

5. Conclusions

Law enforcement officers and other prehospital care providers can recognize and document signs/characteristics of ExDS in the field at the time of interaction. While police use of force is rare, over 15% of individuals undergoing police UoF (or 1 in 6) have 3 or more concomitant signs of Excited Delirium at the time of the UoF event. The single death in our cohort occurred in an individual with 10 concomitant signs of ExDS. Future work including further clinical outcome data will determine whether higher numbers of concomitant signs of ExDS predicts subject morbidity or mortality and whether any specific symptoms or symptom cluster is associated with death. If so, a case definition will be able to be fully described and directed interventions explored in an attempt to mitigate sudden in custody death.

Conflict of interest

Dr. Hall has served as a paid expert witness for inquests in Canada regarding sudden in custody death.

Dr. Vilke has served as a paid expert witness in the USA and in Australia/New Zealand for inquests surrounding sudden in custody death and has been a paid lecturer surrounding sudden in custody death issues in Canada and the USA.

Funding

No industry funds were used in the completion of this research study. Financial support for the collection and assessment of data presented in this manuscript was supplied by the Canadian Police Research Centre in an unrestricted scientific grant.

Ethical approval

Ethical approval for the completion of this study was gained through the institutional review board (science and ethics) for the relevant university. Since the university shares the same name as the city in which the study was conducted, it cannot be named to prevent identification of the identity of the subject who died through the reading of this publication.

Acknowledgements

The authors would like to thank the National Institute of Justice (grant number 2006-DE-BX-K002) and the Canadian Police...
Research Center for the financial assistance for our ongoing research. This project could not have been successfully completed without the full participation of the frontline officers of the involved police service in addition to the support of the administration of the involved police service and its police association. Our thanks go also to Ms. Vicky Stagg for expert statistical assistance in the preparation of this manuscript.

References

Please cite this article in press as: Hall CA, et al., Frequency of signs of excited delirium syndrome in subjects undergoing police use of force: Descriptive evaluation of a prospective, consecutive cohort. Journal of Forensic and Legal Medicine (2012), http://dx.doi.org/10.1016/j.jflm.2012.05.008